Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a new study published in journal Scientific Reports, scientists at NDORMS and Queen Mary University of London have identified reasons underpinning the failure of inflammation to resolve in disorders of musculoskeletal soft tissues such as tendons.

Tendinopathy is a common global disease burden, causing pain and disability. These injuries require prolonged convalescence and there are currently no effective treatments. In the study by Dakin et al. the authors investigated why tendon inflammation fails to resolve in some patients with chronic disease. They studied profiles of pro-inflammatory and inflammation resolving lipids in tendon stromal fibroblasts isolated from patients with tendinopathy and compared them with those derived from healthy donors. Cells from patients with tendinopathy displayed a pro-inflammatory profile and dysregulated resolution responses compared to cells isolated from healthy volunteers. Incubating tendon stromal cells in tissue protective pro-resolving compounds including the aspirin stable isoform 15-epi-LXA4 induced the production of other proresolving lipid mediators and moderated the pro-inflammatory phenotype of diseased tendon stromal cells.

 The investigators noted that the effects of 15-epi-LXA4 treatment were more profound in healthy compared to diseased tendon stromal cells. They identified that cells from tendinopathy patients displayed enhanced ability to convert proresolving mediators to metabolites that carry reduced biological actions. Diseased tendon tissues and cells highly expressed an enzyme (15-PGDH) implicated in the inactivation of tissue protective proresolving mediators. Inhibition of 15-PGDH significantly reduced the further conversion of proresolving mediators and moderated the inflammatory phenotype of diseased tendon cells. These findings suggest that chronic inflammation in musculoskeletal soft tissues may result from dysregulated resolution responses. The authors propose that a dual pronged approach, using pro-resolving mediators together with inhibitors to 15-PGDH represents a novel therapeutic strategy to reduce local tendon inflammation and promote tissue repair. 

Figure 1

Spectra identifying the further metabolites of pro-resolving mediators in tendon stromal cells isolated from healthy volunteers (HV) and patients with tendon disease (TD). Cells from tendinopathy patients displayed enhanced ability to convert tissue protective proresolving mediators to metabolites that carry reduced biological actions. Staining shows cells from patients with tendinopathy highly express 15-PGDH, implicated in the inactivation of proresolving mediators.

Spectra-identifying-the-further-metabolites-of-pro-resolving-mediators.png

read THE FULL STUDY on Scientific Report:

Increased 15-PGDH expression leads to dysregulated resolution responses in stromal cells from patients with chronic tendinopathy. Stephanie G Dakin, Lucy Ly, Romain A. Colas, Udo Oppermann, Kim Wheway, Bridget Watkins, Jesmond Dalli, Andrew J Carr.

 

 

 

Similar stories

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications, establishes for the first time a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Reflecting on the role of Clinical Director of Trauma and Orthopaedics

In 2021 Professor Andrew Price was appointed Clinical Director of Trauma and Orthopaedics at the Oxford University Hospitals NHS Foundation Trust. After 9 months in post, we find out what the challenges are and what he’s been able to bring to the role.

Building a humanoid bioreactor

A humanoid robot is being used at NDORMS in an attempt to grow tendon tissue for repairing shoulder injuries.

Professor Fiona Powrie recognised in Queen’s Birthday Honours

Professor Fiona Powrie was honoured in the 2022 Queen’s Birthday Honours List, published as Her Majesty celebrates her Platinum Jubilee.