Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Clinical prediction models (CPMs) have become fundamental for risk stratification across healthcare. The CPM pipeline (development, validation, deployment, and impact assessment) is commonly viewed as a one-time activity, with model updating rarely considered and done in a somewhat ad hoc manner. This fails to address the fact that the performance of a CPM worsens over time as natural changes in populations and care pathways occur. CPMs need constant surveillance to maintain adequate predictive performance. Rather than reactively updating a developed CPM once evidence of deteriorated performance accumulates, it is possible to proactively adapt CPMs whenever new data becomes available. Approaches for validation then need to be changed accordingly, making validation a continuous rather than a discrete effort. As such, "living" (dynamic) CPMs represent a paradigm shift, where the analytical methods dynamically generate updated versions of a model through time; one then needs to validate the system rather than each subsequent model revision.

Original publication

DOI

10.1186/s41512-020-00090-3

Type

Journal article

Journal

Diagn progn res

Publication Date

11/01/2021

Volume

5

Keywords

Clinical prediction models, Dynamic model, Learning health system, Model development, Model updating, Validation