Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Older adults with sarcopenia, which is an aging-related phenomenon of muscle mass loss, usually suffer from decreases in both strength and functional performance. However, the causality between function loss and physiological changes is unclear. This study aimed to explore the motor unit characteristics of the neurological factors between normal subjects and those with sarcopenia. Five risk-sarcopenia (age: 66.20 ± 4.44), five healthy (age: 69.00 ± 2.35), and twelve young (age: 21.33 ± 1.15) participants were selected. Each participant performed knee extension exercises at a 50% level of maximal voluntary isometric contraction. Next, electromyogram (EMG) signals were collected, and information on each parameter-e.g., motor unit number, recruitment threshold, the slope of the mean firing rate to recruitment threshold, y-intercept, firing rate per unit force, and mean motor unit firing rate (MFR)-was extracted to analyze muscle fiber discrimination (MFD). Meanwhile, force variance was used to observe the stability between two muscle groups. The results suggested that there was no difference between the three groups for motor unit number, recruitment threshold, y-intercept, mean firing rate, and motor unit discrimination (p > 0.05). However, the slope of MFR and firing rate per unit force in the risk-sarcopenia group were significantly higher than in the young group (p < 0.05). Regarding muscle performance, the force variance in the non-sarcopenia group was significantly higher than the young group (p < 0.05), while the risk-sarcopenia group showed a higher trend than the young group. This study demonstrated some neuromuscular characters between sarcopenia and healthy elderly and young people when performing the same level of leg exercise tasks. This difference may provide some hints for discovering aging-related strength and function loss. Future studies should consider combining the in vivo measurement of muscle fiber type to clarify whether this EMG difference is related to the loss of muscle strength or mass before recruiting symptomatic elderly participants for further investigation.

Original publication




Journal article


Int j environ res public health

Publication Date





Decomposed Electromyography, aging, motor unit, sarcopenia