Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Evaluate the completeness of reporting of prognostic prediction models developed using machine learning methods in the field of oncology. STUDY DESIGN AND SETTING: We conducted a systematic review, searching the MEDLINE and Embase databases between 01/01/2019 and 05/09/2019, for non-imaging studies developing a prognostic clinical prediction model using machine learning methods (as defined by primary study authors) in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement to assess the reporting quality of included publications. We described overall reporting adherence of included publications and by each section of TRIPOD. RESULTS: Sixty-two publications met the inclusion criteria. 48 were development studies and 14 were development with validation studies. 152 models were developed across all publications. Median adherence to TRIPOD reporting items was 41% [range: 10%-67%] and at least 50% adherence was found in 19% (n=12/62) of publications. Adherence was lower in development only studies (median: 38% [range: 10%-67%]); and higher in development with validation studies (median: 49% [range: 33%-59%]). CONCLUSION: Reporting of clinical prediction models using machine learning in oncology is poor and needs urgent improvement, so readers and stakeholders can appraise the study methods, understand study findings, and reduce research waste.

Original publication

DOI

10.1016/j.jclinepi.2021.06.024

Type

Journal article

Journal

J clin epidemiol

Publication Date

10/2021

Volume

138

Pages

60 - 72

Keywords

Machine learning, Prediction, Reporting, Biomedical Research, Guidelines as Topic, Humans, Machine Learning, Medical Oncology, Models, Statistical, Prognosis, Research Design