Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: In healthcare, change is usually detected by statistical techniques comparing outcomes before and after an intervention. A common problem faced by researchers is distinguishing change due to secular trends from change due to an intervention. Interrupted time-series analysis has been shown to be effective in describing trends in retrospective time-series and in detecting change, but methods are often biased towards the point of the intervention. Binary outcomes are typically modelled by logistic regression where the log-odds of the binary event is expressed as a function of covariates such as time, making model parameters difficult to interpret. The aim of this study was to present a technique that directly models the probability of binary events to describe change patterns using linear sections. METHODS: We describe a modelling method that fits progressively more complex linear sections to the time-series of binary variables. Model fitting uses maximum likelihood optimisation and models are compared for goodness of fit using Akaike's Information Criterion. The best model describes the most likely change scenario. We applied this modelling technique to evaluate hip fracture patient mortality rate for a total of 2777 patients over a 6-year period, before and after the introduction of a dedicated hip fracture unit (HFU) at a Level 1, Major Trauma Centre. RESULTS: The proposed modelling technique revealed time-dependent trends that explained how the implementation of the HFU influenced mortality rate in patients sustaining proximal femoral fragility fractures. The technique allowed modelling of the entire time-series without bias to the point of intervention. Modelling the binary variable of interest directly, as opposed to a transformed variable, improved the interpretability of the results. CONCLUSION: The proposed segmented linear regression modelling technique using maximum likelihood estimation can be employed to effectively detect trends in time-series of binary variables in retrospective studies.

Original publication




Journal article


Comput math methods med

Publication Date





Computational Biology, Computer Simulation, Hip Fractures, Humans, Likelihood Functions, Linear Models, Models, Statistical, Observational Studies as Topic, Outcome Assessment, Health Care, Probability, Retrospective Studies, Time Factors