Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To provide approximations to recover the full regression equation across different scenarios of incompletely reported prediction models that were developed from binary logistic regression. STUDY DESIGN AND SETTING: In a case study, we considered four common scenarios and illustrated their corresponding approximations: (A) Missing: the intercept, Available: the regression coefficients of predictors, overall frequency of the outcome and descriptive statistics of the predictors; (B) Missing: regression coefficients and the intercept, Available: a simplified score; (C) Missing: regression coefficients and the intercept, Available: a nomogram; (D) Missing: regression coefficients and the intercept, Available: a web calculator. RESULTS: In the scenario A, a simplified approach based on the predicted probability corresponding to the average linear predictor was inaccurate. An approximation based on the overall outcome frequency and an approximation of the linear predictor distribution was more accurate, however, the appropriateness of the underlying assumptions cannot be verified in practice. In the scenario B, the recovered equation was inaccurate due to rounding and categorization of risk scores. In the scenarios C and D, the full regression equation could be recovered with minimal error. CONCLUSION: The accuracy of the approximations in recovering the regression equation varied depending on the available information.

Original publication

DOI

10.1016/j.jclinepi.2021.11.033

Type

Journal article

Journal

J clin epidemiol

Publication Date

01/12/2021

Keywords

Logistic regression, Prediction model, Reverse engineering