Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Successful osseointegration stems from the provision of a mechanically competent mineralised matrix at the implant site. Mature osteoblasts are the cells responsible for achieving this and a key factor for ensuring healthy bone tissue is associated with prosthetic materials will be 1α,25 dihydroxy vitamin D3 (calcitriol). However it is known that calcitriol per se does not promote osteoblast maturation, rather the osteoblasts need to be in receipt of calcitriol in combination with selected growth factors in order to undergo a robust maturation response. Herein we report how agonists of the lysophosphatidic acid (LPA) receptor, LPA and (2S)-OMPT, synergistically co-operate with calcitriol to secure osteoblast maturation for cells grown upon two widely used bone biomaterials, titanium and hydroxyapatite. Efforts could now be focussed on functionalising these materials with LPA receptor agonists to support in vivo calcitriol-induced osseointegration via heightened osteoblast maturation responses. © 2009 Elsevier Ltd. All rights reserved.

Original publication




Journal article



Publication Date





199 - 206