Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One of the wound treatments was negative pressure wound therapy (NPWT), which used wound dressings on the wound bed to ameliorate the wound healing. Unfortunately, most wound dressings were two dimensional (2D), lacking the ability to cover severe wounds with a straightforward procedure. The sheets needed to be stacked following the wound curvature, which might be problematic since improper stacking could hinder the wound healing. Regarding the mentioned problems, our group develop 3D wound dressings, which are made using 3D printers. The wound dressings are made of polycaprolactone (PCL), polyurethane (PU), and polyvinyl alcohol (PVA). As the initial stage, the mechanical integrity of the soft polymers was investigated under uniaxial tensile and uniaxial compressive stress using computational methods. The polymers were defined as 3D lattices following the dimension of existing wound dressings. Based on the simulation results of displacement and von Mises stress, the three polymers are mechanically safe to be used as wound dressing materials.

Type

Journal article

Journal

Journal of mechanical engineering

Publication Date

01/01/2021

Volume

18

Pages

1 - 11