Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Acute aortic syndrome is associated with aortic medial degeneration. 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) detects microscopic tissue calcification as a marker of disease activity. OBJECTIVES: In a proof-of-concept study, this investigation aimed to establish whether 18F-NaF PET combined with computed tomography (CT) angiography could identify aortic medial disease activity in patients with acute aortic syndrome. METHODS: Patients with aortic dissection or intramural hematomas and control subjects underwent 18F-NaF PET/CT angiography of the aorta. Aortic 18F-NaF uptake was measured at the most diseased segment, and the maximum value was corrected for background blood pool activity (maximum tissue-to-background ratio [TBRmax]). Radiotracer uptake was compared with change in aortic size and major adverse aortic events (aortic rupture, aorta-related death, or aortic repair) over 45 ± 13 months. RESULTS: Aortic 18F-NaF uptake co-localized with histologically defined regions of microcalcification and elastin disruption. Compared with control subjects, patients with acute aortic syndrome had increased 18F-NaF uptake (TBRmax: 1.36 ± 0.39 [n = 20] vs 2.02 ± 0.42 [n = 47] respectively; P < 0.001) with enhanced uptake at the site of intimal disruption (+27.5%; P < 0.001). 18F-NaF uptake in the false lumen was associated with aortic growth (+7.1 mm/year; P = 0.011), and uptake in the outer aortic wall was associated with major adverse aortic events (HR: 8.5 [95% CI: 1.4-50.4]; P = 0.019). CONCLUSIONS: In patients with acute aortic syndrome, 18F-NaF uptake was enhanced at sites of disease activity and was associated with aortic growth and clinical events. 18F-NaF PET/CT holds promise as a noninvasive marker of disease severity and future risk in patients with acute aortic syndrome. (18F Sodium Fluoride PET/CT in Acute Aortic Syndrome [FAASt]; NCT03647566).

Original publication

DOI

10.1016/j.jcmg.2022.01.003

Type

Journal article

Journal

Jacc cardiovasc imaging

Publication Date

07/2022

Volume

15

Pages

1291 - 1304

Keywords

aortic dissection, aortic growth, intramural hematoma, major adverse aortic events, microcalcification, vascular injury, Aorta, Calcinosis, Coronary Artery Disease, Fluorine Radioisotopes, Humans, Plaque, Atherosclerotic, Positron Emission Tomography Computed Tomography, Positron-Emission Tomography, Predictive Value of Tests, Radiopharmaceuticals, Risk Factors, Sodium Fluoride, Tomography, X-Ray Computed