Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIM: To assess the effect of two iterative reconstruction algorithms (AIDR and AIDR3D) and individualized automatic tube current selection on radiation dose and image quality in computed tomography coronary angiography (CTCA). MATERIALS AND METHODS: In a single-centre cohort study, 942 patients underwent electrocardiogram-gated CTCA using a 320-multidetector CT system. Images from group 1 (n = 228) were reconstructed with a filtered back projection algorithm (Quantum Denoising Software, QDS+). Iterative reconstruction was used for group 2 (AIDR, n = 379) and group 3 (AIDR3D, n = 335). Tube current was selected based on body mass index (BMI) for groups 1 and 2, and selected automatically based on scout image attenuation for group 3. Subjective image quality was graded on a four-point scale (1 = excellent, 4 = non-diagnostic). RESULTS: There were no differences in age (p = 0.975), body mass index (p = 0.435), or heart rate (p = 0.746) between the groups. Image quality improved with iterative reconstruction and automatic tube current selection [1.3 (95% confidence intervals (CI): 1.2-1.4), 1.2 (1.1-1.2) and 1.1 (1-1.2) respectively; p 

Original publication

DOI

10.1016/j.crad.2013.05.098

Type

Journal article

Journal

Clin radiol

Publication Date

11/2013

Volume

68

Pages

e570 - e577

Keywords

Algorithms, Cohort Studies, Contrast Media, Coronary Angiography, Coronary Artery Disease, Electrocardiography, Female, Humans, Image Processing, Computer-Assisted, Iopamidol, Male, Middle Aged, Multidetector Computed Tomography, Radiation Dosage, Radiation Protection, Radiographic Image Enhancement, Radiographic Image Interpretation, Computer-Assisted