Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Artificial intelligence (AI) and digital health technologies are increasingly used in the medical field. Despite promises of leading the future of personalized medicine and better clinical outcomes, implementation of AI faces barriers for deployment at scale. We introduce a novel implementation framework that can facilitate digital health designers, developers, patient groups, policymakers, and other stakeholders, to co-create and solve issues throughout the life cycle of designing, developing, deploying, monitoring, and maintaining algorithmic models. This framework targets health systems that integrate multiple machine learning (ML) models with various modalities. This design thinking approach promotes clinical utility beyond model prediction, combining privacy preservation with clinical parameters to establish a reward function for reinforcement learning, ranking competing models. This allows leveraging explainable AI (xAI) methods for clinical interpretability. Governance mechanisms and orchestration platforms can be integrated to monitor and manage models. The proposed framework guides users toward human-centered AI design and developing AI-enhanced health system solutions.

Original publication

DOI

10.1016/j.isci.2025.112406

Type

Journal article

Journal

Iscience

Publication Date

16/05/2025

Volume

28