Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Several studies support C-reactive protein (CRP) as a systemic cardiovascular risk factor. The recent detection of CRP in arterial intima suggests a dual activity in atherosclerosis as a circulating and tissue mediator on vascular and immune cells. In the present paper, we focused on the inflammatory effects of CRP on human monocytes, which were isolated by Ficoll-Percoll gradients and cultured in adherence to polystyrene, endothelial cell monolayer, or in suspension. Chemokine levels, adhesion molecule, and chemokine receptor expression were detected by ELISA, flow cytometry, and real-time RT-PCR. Migration assays were performed in a Boyden chamber. Stimulation with CRP induced release of CCL2, CCL3, and CCL4 in adherent monocytes through the binding to CD32a, CD32b, and CD64, whereas no effect was observed in suspension culture. This was associated with CRP-induced up-regulation of adhesion molecules membrane-activated complex 1 (Mac-1) and ICAM-1 on adherent monocytes. Blockade of Mac-1/ICAM-1 interaction inhibited the CRP-induced chemokine secretion. In addition, CRP reduced mRNA and surface expression of corresponding chemokine receptors CCR1, CCR2, and CCR5 in adherent monocytes. This effect was a result of chemokine secretion, as coincubation with neutralizing anti-CCL2, anti-CCL3, and anti-CCL4 antibodies reversed the effect of CRP. Accordingly, a reduced migration of CRP-treated monocytes to CCL2 and CCL3 was observed. In conclusion, our data suggest an in vitro model to study CRP activities in adherent and suspension human monocytes. CRP-mediated induction of adhesion molecules and a decrease of chemokine receptors on adherent monocytes might contribute to the retention of monocytes within atherosclerotic lesions and recruitment of other circulating cells.

Original publication

DOI

10.1189/jlb.0208123

Type

Journal article

Journal

Journal of leukocyte biology

Publication Date

10/2008

Volume

84

Pages

1109 - 1119

Addresses

Department of Cardiology, University Hospital Geneva, 1211 Geneva, Switzerland.

Keywords

Monocytes, Humans, C-Reactive Protein, Intercellular Adhesion Molecule-1, Antigens, CD11b, Recombinant Proteins, Chemokines, Reverse Transcriptase Polymerase Chain Reaction, Cell Adhesion, Cell Death, Cell Movement, Cell Survival