Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of rotator cuff augmentation has increased dramatically over the last 10 years in response to the high rate of failure observed after non-augmented surgery. However, although augmentations have been shown to reduce shoulder pain, there is no consensus or clear guideline as to what is the safest or most efficacious material. Current augmentations, either available commercially or in development, can be classified into three categories: non-degradable structures, extra cellular matrix (ECM)-based patches and degradable synthetic scaffolds. Non-degradable structures have excellent mechanical properties, but can cause problems of infection and loss of integrity in the long-term. ECM-based patches usually demonstrate excellent biological properties in vitro, but studies have highlighted complications in vivo due to poor mechanical support and to infection or inflammation. Degradable synthetic scaffolds represent the new generation of implants. It is proposed that a combination of good mechanical properties, active promotion of biological healing, low infection risk and bio-absorption are the ideal characteristics of an augmentation material. Among the materials with these features, those processed by electrospinning have shown great promis. However, their clinical effectiveness has yet to be proven and well conducted clinical trials are urgently required.

Original publication

DOI

10.1111/iep.12030

Type

Journal article

Journal

Int j exp pathol

Publication Date

08/2013

Volume

94

Pages

287 - 292

Keywords

biocompatibility, electrospinning, extracellular matrix, patch, polymer, rotator cuff, synthetic, tendon, Biocompatible Materials, Humans, Prostheses and Implants, Rotator Cuff Injuries, Shoulder Pain, Tendon Injuries, Tissue Scaffolds, Wound Healing