Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We demonstrate complementary differences in the behavior of B lymphoblastoid cells adhering to LFA-1 or its counter-receptor ICAM-1. The interaction of B lymphoblastoid cells with glass-supported planar bilayers bearing LFA-1 or ICAM-1 was observed by time-lapse video microscopy, and the distribution of adhesion receptors on cells interacting with the planar bilayers was studied by immunofluorescence microscopy. B lymphoblasts formed a large contact area and crawled rapidly (up to 25 microns/min) on planar bilayers bearing ICAM-1. In contrast, these cells attached to planar bilayers bearing LFA-1 through a fixed point about which the cells actively pivoted, using a single stalk-like projection. Phorbol ester-stimulated lymphoblasts, which adhere more strongly to ICAM-1-bearing substrates than unstimulated lymphoblasts, were still capable of locomotion on ICAM-1. Phorbol ester stimulation of B lymphoblasts on planar bilayers bearing LFA-1 promoted a rapid conversion from "stalk" attachment to symmetrical spreading of the cell on the substrate. Cellular LFA-1 remained uniformly distributed on the cell surface during interaction with bilayers bearing purified ICAM-1 as determined by immunofluorescence. In contrast, ICAM-1 was concentrated in the stalk-like structure through which the unstimulated B lymphoblasts adhered to LFA-1 in planar bilayers, but ICAM-1 immunofluorescence became more uniformly distributed over the cell surface within minutes of phorbol ester addition. Neither LFA-1 or ICAM-1 colocalized with the prominent staining of filamentous actin in the ruffling membrane regions. Interaction through cell surface LFA-1 and ICAM-1, 2, or 3 promotes different cellular morphologies and behaviors, the correlation of which with previously observed patterns of lymphocyte interaction with different cell types is discussed.


Journal article


J immunol

Publication Date





2654 - 2663


B-Lymphocytes, Cell Adhesion, Cell Adhesion Molecules, Cell Communication, Cell Line, Cell Movement, Humans, Intercellular Adhesion Molecule-1, Lymphocyte Function-Associated Antigen-1, Microscopy, Fluorescence