Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The technique of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) coupled with computer image analysis was used in this study to examine changes in protein expression occurring during the onset of programmed cell death (PCD) in rat sympathetic neurons following withdrawal of nerve growth factor (NGF). Sympathetic neurons from superior cervical ganglia of postnatal day-one Wistar rats were cultured in the presence of NGF for 24 h and then either maintained in the presence of NGF or deprived of NGF for a period of 8 h. To label the proteins being synthesised, neurons were cultured in the presence of L-[35S]methionine for a further 2 h under the same conditions but with 3% of the normal methionine concentration. Neuronal proteins were then analysed by 2-D PAGE using immobilised pH gradient (IPG) gel strips in the first dimension. For the second dimension a custom-built electrophoresis system capable of running multiple sodium dodecyl sulfate (SDS)-PAGE slab gels in a vertical configuration, with good temperature control (+/- 0.7 degrees C) was used and is described in this paper. Proteins resolved on the dried gels were visualised using storage phosphor technology and the digitised images subjected to rigorous analysis using the QUEST II software system. Seventeen proteins whose relative synthesis decreased and four proteins that increased upon NGF withdrawal were located and are documented.

Original publication

DOI

10.1002/elps.11501601207

Type

Conference paper

Publication Date

07/1995

Volume

16

Pages

1255 - 1267

Addresses

Department of Biochemistry, University of Cambridge, UK.

Keywords

Superior Cervical Ganglion, Neurons, Animals, Rats, Rats, Wistar, Nerve Growth Factors, Electrophoresis, Gel, Two-Dimensional, Apoptosis, Image Processing, Computer-Assisted, Software