Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To demonstrate that portable electrospinning devices can spin a wide range of polymers into submicron fibres and provide a mesh quality comparable to those produced with benchtop machines. We have designed a small, battery-operated electrospinning apparatus which enables control over the voltage and the flow rate of the polymer solution via a microcontroller. It can be used to electrospin a range of commonly used polymers including poly(ε-caprolactone), poly(p-dioxanone), poly(lactic-co-glycolic acid), poly(3-hydroxybutyrate), poly(ethylene oxide), poly(vinyl acohol) and poly(vinyl butyral). Moreover, electrospun meshes are produced with a quality comparable to a benchtop machine. We also show that the portable apparatus is able to electrospray beads and microparticles. Finally, we highlight the potential of the device for wound healing applications by demonstrating the possibility of electrospinning onto pig and human skins. Portable electrospinning devices are still at an early stage of development but they could soon become an attractive alternative to benchtop machines, in particular for uses that require mobility and a higher degree of flexibility, such as for wound healing applications.

Original publication

DOI

10.1007/s10529-014-1760-6

Type

Journal article

Journal

Biotechnol lett

Publication Date

05/2015

Volume

37

Pages

1107 - 1116

Keywords

Animals, Biocompatible Materials, Humans, Nanofibers, Point-of-Care Systems, Polymers, Skin, Swine, Tissue Engineering