Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Isomaltulose (ISO) is a disaccharide that is slowly digested, resulting in a slow availability for absorption. The aim of this study was to compare the blood substrate responses and exogenous carbohydrate (CHO) oxidation rates from orally ingested sucrose (SUC) and ISO during moderate intensity exercise. We hypothesized that the oxidation of ISO is lower compared with SUC, resulting in lower plasma glucose and insulin concentrations and subsequent lower CHO and higher fat oxidation rates. Ten trained men [maximal oxygen uptake (VO(2)max), 64 +/- 1 mL/(kg body mass.min)] cycled on 3 occasions for 150 min at 59 +/- 2% VO(2)max and consumed either water (WAT) or 1 of 2 CHO solutions providing 1.1 g/min of CHO in the form of either SUC or ISO. Peak exogenous CHO oxidation rates were higher (P < 0.05) during the SUC trial (0.92 +/- 0.03 g/min) than during the ISO trial (0.54 +/- 0.05 g/min). Total endogenous CHO oxidation over the final 90 min of exercise was lower (P < 0.05) in the SUC trial (107 +/- 10 g) than in the WAT (137 +/- 7 g) and ISO (127 +/- 9 g) trials. Fat oxidation was higher during the WAT trial than during the SUC and ISO trials. ISO resulted in a lower plasma insulin response at 30 min compared with SUC, whereas the glucose response did not differ between the 2 CHO. Oxidation of ingested ISO was significantly less than that of SUC, most likely due to the lower rate of digestion of ISO. A lower CHO delivery and a small difference in plasma insulin may have resulted in higher endogenous CHO use and higher fat oxidation during the ISO trial than during the SUC trial.

Original publication

DOI

10.1093/jn/137.5.1143

Type

Journal article

Journal

The Journal of nutrition

Publication Date

05/2007

Volume

137

Pages

1143 - 1148

Addresses

School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom.

Keywords

Humans, Insulin, Blood Glucose, Isomaltose, Sucrose, Fats, Fatty Acids, Nonesterified, Solutions, Exercise, Administration, Oral, Cross-Over Studies, Energy Metabolism, Oxidation-Reduction, Osmolar Concentration, Adult, Male, Carbohydrate Metabolism