Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this manuscript we describe the preparation of an oxygen-loaded microbubble (O2MB) platform for the targeted treatment of pancreatic cancer using both sonodynamic therapy (SDT) and antimetabolite therapy. O2MB were prepared with either the sensitiser Rose Bengal (O2MB-RB) or the antimetabolite 5-fluorouracil (O2MB-5FU) attached to the microbubble (MB) surface. The MB were characterised with respect to size, physical stability and oxygen retention. A statistically significant reduction in cell viability was observed when three different pancreatic cancer cell lines (BxPc-3, MIA PaCa-2 and PANC-1), cultured in an anaerobic cabinet, were treated with both SDT and antimetabolite therapy compared to either therapy alone. In addition, a statistically significant reduction in tumour growth was also observed when ectopic human xenograft BxPC-3 tumours in SCID mice were treated with the combined therapy compared to treatment with either therapy alone. These results illustrate not only the potential of combined SDT/antimetabolite therapy as a stand alone treatment option in pancreatic cancer, but also the capability of O2-loaded MBs to deliver O2 to the tumour microenvironment in order to enhance the efficacy of therapies that depend on O2 to mediate their therapeutic effect. Furthermore, the use of MBs to facilitate delivery of O2 as well as the sensitiser/antimetabolite, combined with the possibility to activate the sensitiser using externally applied ultrasound, provides a more targeted approach with improved efficacy and reduced side effects when compared with conventional systemic administration of antimetabolite drugs alone.

Original publication




Journal article



Publication Date





20 - 32


5-Flurouracil, Cancer, Hypoxia, Microbubbles, Pancreatic, Rose Bengal, SDT, Animals, Antimetabolites, Antineoplastic, Cell Line, Tumor, Cell Survival, Drug Delivery Systems, Female, Fluorescent Dyes, Fluorouracil, Humans, Mice, Mice, Inbred BALB C, Mice, SCID, Microbubbles, Oxygen, Pancreas, Pancreatic Neoplasms, Rose Bengal, Ultrasonics