Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To mount an immune response, T lymphocytes must successfully search for foreign material bound to the surface of antigen-presenting cells. How T cells optimize their chances of encountering and responding to these antigens is unknown. T cell motility in tissues resembles a random or Levy walk and is regulated in part by external factors including chemokines and lymph-node topology, but motility parameters such as speed and propensity to turn may also be cell intrinsic. Here we found that the unconventional myosin 1g (Myo1g) motor generates membrane tension, enforces cell-intrinsic meandering search, and enhances T-DC interactions during lymph-node surveillance. Increased turning and meandering motility, as opposed to ballistic motility, is enhanced by Myo1g. Myo1g acts as a "turning motor" and generates a form of cellular "flânerie." Modeling and antigen challenges show that these intrinsically programmed elements of motility search are critical for the detection of rare cognate antigen-presenting cells.

Original publication

DOI

10.1016/j.cell.2014.05.044

Type

Journal article

Journal

Cell

Publication Date

31/07/2014

Volume

158

Pages

492 - 505

Keywords

Animals, Antigen-Presenting Cells, Cell Membrane, Cell Movement, Immunologic Surveillance, Lymph Nodes, Mice, Minor Histocompatibility Antigens, Myosins, Receptors, Antigen, T-Cell, T-Lymphocytes