Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The endosomal pathway constitutes a highly dynamic intracellular transport system, which is composed of vesicular and tubular compartments. Endosomal tubules enable geometry-based discrimination between membrane and luminal content. Extended tubular endosomes were suggested to deliver a steady stream of membrane proteins to one location more reliable and effective than vesicular endosomes. Recently, we demonstrated that human dendritic cells (DCs) form a large elongated tubular endosomal network, e.g. ETEN, upon distinct triggers. LPS-stimulation triggered late endosomal tubulation. Additional clustering of class I MHC and ICAM-1 by a cognate interaction between antigen-laden DC and antigen-specific CD8(+) T-cells induces formation of transferrin-positive tubules emanating from the endosomal recycling compartment (ERC). We here discuss cell-biological mechanisms that are involved in membrane bending and possibly underlie initiation, elongation, and stabilization of ETEN in human DCs. Using a knock-down approach we demonstrate that MICAL-L1 is necessary for ETEN remodeling originating from ERC in human DCs.

Original publication




Journal article


Commun integr biol

Publication Date





MICALL1, elongated tubular endosomal network (ETEN), endosomal recycling, membrane remodeling