Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Purpose of review: Axial spondyloarthritis remains an area of significant unmet clinical need with only two immune pathways currently targeted by licenced therapies compared to other immune-mediated inflammatory joint disorders such as rheumatoid arthritis where a multitude of therapeutic options are available. This review will look at emerging therapeutic targets in axial spondyloarthritis beyond the neutralisation of IL-17A and TNF by monoclonal antibodies. Recent findings: Several promising targets are in various stages of pre-clinical and clinical development in axial spondyloarthritis. These include small molecule approaches to target transcription factors, epigenetic modification and intracellular modulation of cytokine signalling by kinase inhibition. GM-CSF has also emerged as a potential driver of inflammation. Summary: A number of novel and promising therapeutic options are in various stages of development in axial spondyloarthritis. The Janus kinase inhibitors have shown great promise in other immune-mediated inflammatory disorders and will be an exciting addition to the axial spondyloarthritis field as the first oral disease-modifying agents. GM-CSF blockade also shows great promise since antibodies for neutralising this cytokine are safe in patients and have shown efficacy in other immune-mediated inflammatory diseases.

Original publication

DOI

10.1007/s40674-018-0095-1

Type

Journal article

Journal

Curr treatm opt rheumatol

Publication Date

2018

Volume

4

Pages

174 - 182

Keywords

GM-CSF, JAK, ROR-γt, Spondyloarthritis, Th17