Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Survivorship in total knee arthroplasty (TKA) is multifactorial and dependent upon alignment, ligament balance, patient characteristics, and implant factors. The contribution of each factor leading to implant loosening is not well known. This study defined the effect of femoral component sizing relative to tibial size on loading patterns in the proximal tibia. Changes in strain were measured in tibiae implanted with appropriately sized metal-backed tibial components loaded with 2 sizes of femoral components. Significant increases of shear strain up to 126% were measured in peripheral regions of the tibia when loaded with a larger vs a smaller femoral component. Increased peripheral loading in the proximal tibia could predispose to a higher risk of cancellous overload and failure. Limiting stress concentrations in the periphery of the proximal tibia by considering sizing relationships between femoral and tibial components may decrease osseous strains and the likelihood of bony overload in TKA.

Original publication

DOI

10.1016/j.arth.2008.11.003

Type

Journal article

Journal

J arthroplasty

Publication Date

01/2010

Volume

25

Pages

58 - 63

Keywords

Arthroplasty, Replacement, Knee, Femur, Humans, In Vitro Techniques, Knee Prosthesis, Models, Anatomic, Prosthesis Design, Shear Strength, Stress, Mechanical, Tibia