Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Short-stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem-length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry and (2) if short-stemmed components exhibit primary stability on par with clinically successful designs. METHODS: Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion was then compared with reduced lateral shoulder short stem and short tapered-wedge designs in cyclic axial and torsional testing. RESULTS: Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as a function of reduced stem length within the same component design. CONCLUSION: Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short-stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.

Original publication




Journal article


J arthroplasty

Publication Date





601 - 609


THA, digital image correlation, micromotion, primary stability, short stem, Femur, Hip Prosthesis, Humans, Prosthesis Design, Stress, Mechanical