Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a collaboration with scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Kennedy researchers have contributed to the discovery that neutrophils have many more functions in the body than previously thought. This finding suggests that neutrophil tissue-specific plasticity could be exploited in designing new treatments for neutrophil driven diseases, including cancer.

Artistic representation of a neutrophil, the most abundant cell type in the innate immune system
Artistic representation of a neutrophil, the most abundant cell type in the innate immune system

In a study published in the journal Cell, the research team demonstrate that neutrophils, the most abundant cell type of the innate immune system, acquire new characteristics depending on the tissue they inhabit and that these specialised functions help to maintain organ health.

Professor Irina Udalova and her team at the Kennedy Institute contributed to this project by identifying stable modifications in the neutrophil chromatin landscape as cells transition from bone marrow or spleen into the blood, and between blood and the lung. Chromatin is a complex of DNA and proteins found within chromosomes that is modified by enzymes to help define and maintain the identity of a cell. Using a method called ATAC-seq, Irina and her team examined neutrophil chromatin accessibility, which revealed that neutrophils take on distinct states in different types of tissue.

Neutrophils are well known to provide non-specific defence against microbes and tissue damage.  However, due to their typically short lifespan of less than 24 hours, scientists have believed that these cells have limited capacity to adapt to their environment and adopt new functions.

But the new study shows that when neutrophils leave the blood and migrate into tissues they acquire new, previously unknown properties.

Dr Andrés Hidalgo at CNIC who is lead investigator on the study said, “What is fascinating is that neutrophils appear to acquire functions useful to the specific tissues in each organ. For example, we found that neutrophils in the lung acquire the ability to contribute to the formation of blood vessels, whereas neutrophils in the skin help to maintain the integrity of the cutaneous epithelium. This ability to change cell properties was identified in healthy individuals, which suggests that neutrophils participate in a great variety of normal functions in the body and are not limited to combating infection”.

Previous studies had already identified neutrophil heterogeneity in several diseases. Indeed, these neutrophil changes are prognostic markers in cancer and help to regenerate blood cells after bone marrow transplantation.

However Irina says the ability of neutrophils to transcriptionally reprogram has been overlooked. “This collaborative study makes the first step into understanding neutrophil adaptation to tissue environment at homeostasis. Further investigation into neutrophil transcriptional reprogramming in tissues under inflammatory duress, and decoding the molecular mechanisms and transcription factors that may orchestrate these responses, should be the next critical step.” she explains.

Similar stories

Professor Michael Dustin appointed new Chair in Molecular Immunology

A generous gift from the Kennedy Trust for Rheumatology Research has enabled the creation of a new Chair in Molecular Immunology at the University of Oxford.

Empowering data science for single-cell analysis in Zimbabwe

An innovative computational biology training module was launched in November 2022 at the African Institute of Biomedical Science and Technology (AiBST) in Harare, Zimbabwe, where MSc students were trained in single-cell RNA sequencing data analysis.

T-cell coreceptors are well endowed—with kinases!

The kinase occupancy of CD4 and CD8 coreceptors is high, according to a new study published in PNAS.

Two prestigious Hunterian Professorships awarded to NDORMS researchers

Conrad Harrison and Tom Layton have both been awarded Hunterian Professorships for 2022 by the Royal College of Surgeons of England

Dr Alex Clarke wins Emerging Leaders Prize for lupus research

Alex is one of three exceptional lupus researchers that have been announced as winners of the Medical Research Foundation’s sixth Emerging Leaders Prize.

Adalimumab is found to be a cost-effective treatment for early-stage Dupuytren’s disease

Researchers at the Kennedy Institute of Rheumatology and Oxford Population Health’s Health Economics Research Centre have found that anti-TNF treatment (adalimumab) is likely to be a cost-effective treatment for people affected by early-stage Dupuytren’s disease.