Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Research by Professor Jeremy Fairbank and colleagues, and published in the European Spine Journal, has found automation can improve how we diagnose back problems.

A novel feature of the model is to identify ‘Evidence Hotspots’ that are the array of elements that most contribute to the degradation scores. © Jeremy Fairbanks

Back pain is the top cause of life-long disability worldwide, leading to enormous medical and social costs. Successful diagnosis of the problem at the root of the pain can lead to a better and more effective treatment, improving the lives of patients the world over.

The team looked at 12,018 intervertebral discs, from more than 2000 patients and concluded that the model developed to identify and label vertebrae and discs was as accurate as a radiologist at detecting disc degeneration. The model has the added advantages of being consistent (when compared to multiple practitioners), allowing for a faster analysis and therefore being cheaper.

This research has been recognised with the 2017 International Society for the Study of the Lumbar Spine Bioengineering Award.

"This new method opens the door to automated reading of Lumbar MRI scans. In a research setting this means large cohorts of scans can be read in a consistent fashion removing observer variation. In a clinical setting, where observer variation is also a significant problem, it provides a new method for quality control. We expect an early development will be to screen lumbar MRI scans for 'serious pathology', which is an important indication for the half a million lumbar MRI scans requested in NHS England each year. The impact of this will significantly reduce the cost of current scanning practice and to expand existing MRI capacity", said Professor Fairbank.

The project was based on a large cohort of subjects with back pain gathered and phenotyped as part of an EU funded study, Genodisc (The European Union Health Project on Genes and Disc Degeneration called 'Genodisc' - FP7 Health2007A Grant Agreement No. 201626).

 

Image: Examples of disc volumes (upper in each pair) and their corresponding evidence hotspots (lower in each pair). The leftmost and rightmost images are the second and eighth slice for each disc, out of the full volume of 9 slices. Note that these hotspots localise extremely well. These examples were randomly selected from different patients.

Full paper

Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist.

Eur Spine J. 2017 Feb 6

 

Funder

The European Union Health Project on Genes and Disc Degeneration
Project: 'Genodisc' - FP7 Health2007A Grant Agreement No. 201626

Similar stories

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications, establishes for the first time a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Reflecting on the role of Clinical Director of Trauma and Orthopaedics

In 2021 Professor Andrew Price was appointed Clinical Director of Trauma and Orthopaedics at the Oxford University Hospitals NHS Foundation Trust. After 9 months in post, we find out what the challenges are and what he’s been able to bring to the role.

Building a humanoid bioreactor

A humanoid robot is being used at NDORMS in an attempt to grow tendon tissue for repairing shoulder injuries.

Professor Fiona Powrie recognised in Queen’s Birthday Honours

Professor Fiona Powrie was honoured in the 2022 Queen’s Birthday Honours List, published as Her Majesty celebrates her Platinum Jubilee.