Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Kennedy Institute of Rheumatology have used 3D and live-imaging to show how resident memory B cells boost antibodies to fight influenza.

Confocal microscopy of a lung section, 4 days after being rechallenged with an influenza virus. Resident memory B cells (red) and newly generated plasma cells (yellow) can be seen in very close proximity to infected cells (light blue).

In a paper published in Immunity, the research has for the first time defined the mechanisms that enable resident memory B (BRM) cells to rapidly deliver antibodies at sites infected with the influenza virus.

Tal Arnon, Associate Professor at the Kennedy Institute said: "Resident memory B cells develop in the lungs of influenza-infected hosts. We uncovered a new network of innate-adaptive cell interactions that coordinates the recruitment of BRM cells to infected sites, subsequently leading to the accumulation of plasma cells directly within these regions."

The study, done in close collaboration with Associate Prof. Oliver Bannard at the MRC Human Immunology Unitused 3D and two-photon microscopy to visualise the BRM cells within the lungs of influenza-virus immune and reinfected subjects. The tissues were rechallenged with the virus and the BRM cells tracked in situ. During the memory phase, prior to reinfection, the cells were sparsely scattered across the alveoli displaying limited migration capabilities. However, within 24hrs after secondary infection, the cells doubled their mean migration speeds, travelled long distances to accumulate at the infected site, and subsequently differentiated into plasma cells.

The process was orchestrated by alveolar macrophages which were important for triggering the expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This in turn led to the recruitment of chemokine CXCR3-expressing BRM cells to the infected regions and increased local antibody concentrations.

Influenza is a common airborne virus that infects cells of the respiratory tract. Despite progress in available treatments, it continues to present a significant medical burden and poses the risk of causing global pandemics similar to the one seen in 1918, which was responsible for over 40 million deaths. Ongoing efforts to develop vaccines that induce broadly neutralizing antibodies show encouraging results, but in many cases an important limitation remains the relatively low titers (levels of concentration) that are generated by these vaccines, falling below the threshold needed to saturate infected sites and block viral spreading.

"Given that a single plasma cell can produce up to ~1000 antibodies per second, this process may represent a powerful mechanism to dramatically increase local antibody concentrations where they are needed most; at sites that experience the highest viral titers. The work takes us one step closer to understanding how humoral immunity is regulated locally in peripheral tissues, knowledge that may provide important clues on how to improve the development of effective vaccine strategies to prevent the spread of the flu virus in future."

The research was funded by the Wellcome Trust and Kennedy Trust.

Similar stories

Furniss Group paper wins journal award

Editors at the Journal of Hand Surgery have recognised the Furniss Group with an award for the best paper published in the Journal in 2022. The Editor’s Award recognises research with scientific importance, outstanding study stringency, and a high academic standard.

NIHR Fellowships awarded to NDORMS researchers

Congratulations to Eileen Morrow and Mae Chester-Jones who have received NIHR Doctoral Fellowships

ORUK Early Career Research Fellowship awarded to NDORMS researcher

Congratulations to Jack Tu who has been awarded an Orthopaedic Research UK Early Career Research Fellowship to explore the cause of knee pain after total knee replacement.

OCTRU - delivering answers to important clinical questions

The Oxford Clinical Trials Research Unit (OCTRU) has received NIHR benchmarking results and offers excellent value for money according to the report

Unhelpful thoughts about fracture symptoms hinder recovery

The importance of mindsets and feelings about fracture symptoms have been shown to be a key factor in recovery of musculoskeletal conditions.

Fat tissues can play a protective role against inflammation in the intestine

A new study in The EMBO Journal has revealed how fat tissues might provide a protective role in intestinal inflammation opening new lines of research into the treatment of inflammatory bowel diseases.