Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Kennedy Institute of Rheumatology have used 3D and live-imaging to show how resident memory B cells boost antibodies to fight influenza.

Confocal microscopy of a lung section, 4 days after being rechallenged with an influenza virus. Resident memory B cells (red) and newly generated plasma cells (yellow) can be seen in very close proximity to infected cells (light blue).

In a paper published in Immunity, the research has for the first time defined the mechanisms that enable resident memory B (BRM) cells to rapidly deliver antibodies at sites infected with the influenza virus.

Tal Arnon, Associate Professor at the Kennedy Institute said: "Resident memory B cells develop in the lungs of influenza-infected hosts. We uncovered a new network of innate-adaptive cell interactions that coordinates the recruitment of BRM cells to infected sites, subsequently leading to the accumulation of plasma cells directly within these regions."

The study, done in close collaboration with Associate Prof. Oliver Bannard at the MRC Human Immunology Unitused 3D and two-photon microscopy to visualise the BRM cells within the lungs of influenza-virus immune and reinfected subjects. The tissues were rechallenged with the virus and the BRM cells tracked in situ. During the memory phase, prior to reinfection, the cells were sparsely scattered across the alveoli displaying limited migration capabilities. However, within 24hrs after secondary infection, the cells doubled their mean migration speeds, travelled long distances to accumulate at the infected site, and subsequently differentiated into plasma cells.

The process was orchestrated by alveolar macrophages which were important for triggering the expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This in turn led to the recruitment of chemokine CXCR3-expressing BRM cells to the infected regions and increased local antibody concentrations.

Influenza is a common airborne virus that infects cells of the respiratory tract. Despite progress in available treatments, it continues to present a significant medical burden and poses the risk of causing global pandemics similar to the one seen in 1918, which was responsible for over 40 million deaths. Ongoing efforts to develop vaccines that induce broadly neutralizing antibodies show encouraging results, but in many cases an important limitation remains the relatively low titers (levels of concentration) that are generated by these vaccines, falling below the threshold needed to saturate infected sites and block viral spreading.

"Given that a single plasma cell can produce up to ~1000 antibodies per second, this process may represent a powerful mechanism to dramatically increase local antibody concentrations where they are needed most; at sites that experience the highest viral titers. The work takes us one step closer to understanding how humoral immunity is regulated locally in peripheral tissues, knowledge that may provide important clues on how to improve the development of effective vaccine strategies to prevent the spread of the flu virus in future."

The research was funded by the Wellcome Trust and Kennedy Trust.

Similar stories

Empowering data science for single-cell analysis in Zimbabwe

An innovative computational biology training module was launched in November 2022 at the African Institute of Biomedical Science and technology (AiBST) in Harare, Zimbabwe, where MSc students were trained in single-cell RNA sequencing data analysis.

T-cell coreceptors are well endowed—with kinases!

The kinase occupancy of CD4 and CD8 coreceptors is high, according to a new study published in PNAS.

Two prestigious Hunterian Professorships awarded to NDORMS researchers

Conrad Harrison and Tom Layton have both been awarded Hunterian Professorships for 2022 by the Royal College of Surgeons of England

Dr Alex Clarke wins Emerging Leaders Prize for lupus research

Alex is one of three exceptional lupus researchers that have been announced as winners of the Medical Research Foundation’s sixth Emerging Leaders Prize.

Adalimumab is found to be a cost-effective treatment for early-stage Dupuytren’s disease

Researchers at the Kennedy Institute of Rheumatology and Oxford Population Health’s Health Economics Research Centre have found that anti-TNF treatment (adalimumab) is likely to be a cost-effective treatment for people affected by early-stage Dupuytren’s disease.

Patients like me

What can patients learn from the experiences of people like them who’ve already had a hip replacement? A new tool called ‘Patients like me’ helps answer some of the questions about pain, complications and how long the prosthesis might last.