Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Pioneering research by scientists at the Universities of Oxford and Birmingham published today in Nature brings us a step closer to developing targeted therapies for inflammatory diseases.

The research team shows, for the first time, that different types of fibroblasts - the most common cells of connective tissue in animals - are organised in different layers in the joint and are responsible for two very different forms of arthritis; osteoarthritis and rheumatoid arthritis.

Targeted therapies could alter the behaviour of fibroblasts to reduce inflammation and tissue destruction in these two diseases without the need for long-term immunosuppression or joint replacements, say the scientists.

To know we are getting closer to offering patients new solutions is very exciting and we are doing it because we are finally looking at diseases using a process-driven cell based approach through the A-TAP project.”  - Professor Chris Buckley

The research was supported by Wellcome Trust, Versus Arthritis, and NIHR Birmingham Biomedical Research Centre, which is based at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham.

The research is part of the Arthritis Therapy Acceleration Programme (A-TAP), a joint alliance between the Universities of Birmingham and Oxford, which aims to ensure that world-class basic science observations are accelerated into early-phase experimental therapy for patients. A-TAP is funded by the Kennedy Trust for Rheumatology Research at the University of Oxford. 

Chief investigator Professor Chris Buckley, Director of Clinical Research at the Kennedy Institute at the University of Oxford and of the University of Birmingham’s Institute of Inflammation and Ageing, said: “If we compare fibroblasts to soil, this research has shown for the first time that not all soil is the same.

“Just as there are different layers of soil in our gardens - top soil and subsoil - there are different types of fibroblasts in our joints – and each layer seems to be associated with a different type of arthritis.

“From a research perspective this is exciting, but the clinical implications are also very important too. For the first time, we have identified two different types of fibroblasts in the joint, which, just like the different types of soil, lead to different types of arthritis.

“The top soil is what goes wrong in osteoarthritis, whereas in rheumatoid arthritis it’s the subsoil that is at fault.

“When patients are seen in clinic and we can’t help them, it motivates us to think creatively about how we conduct our research and classify disease.

“We have now discovered a new way to classify, and therefore treat, arthritis based on the underlying cell, rather than just the clinical features and genes involved.

“Current therapies work like weed killer – they kill the weeds but the weeds come back if you don’t continue to apply the weed killer. Our research will facilitate research aimed at changing the top soil, subsoil - or both - to treat arthritis.

“To know we are getting closer to offering patients new solutions is very exciting and we are doing it because we are finally looking at diseases using a process-driven cell based approach through the A-TAP project.”

Two recent technical and clinical advances have helped lead to the researchers’ discovery: minimally invasive biopsies and single-cell sequencing. These two developments have allowed the research team to investigate fibroblast cells and their location in the joint as never before, ultimately identifying and describing the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or cartilage/bone damage in arthritis.

First author Dr Adam Croft, currently NIHR Academic Clinical Lecturer in Rheumatology at the University of Birmingham and previously funded by a Wellcome Trust Clinical Career Development Fellowship, adds: “Rheumatoid arthritis is challenging to treat. It causes chronic inflammation in joints, leading to pain, swelling and, over time, damage to the joint. This is due to the body’s own immune system attacking the joints, which leads to an influx of immune cells in the lining of the joint.

“Current treatments target these immune cells either directly or by trying to disrupt the signals that attract the cells to the joint. No treatments directly target fibroblasts, key effector cells in the pathology of this disease.

“Thanks to advances in technology we have now, for the first time, been able to identify which fibroblasts are pathogenic in arthritis and how they contribute to disease. Importantly, we found that by getting rid of these fibroblasts from the joint we could reduce the influx of immune cells to the joint, leading to less inflammation and destruction.

“These findings mean we now have a clear rationale for developing drugs that can target joint fibroblasts directly and provide more effective treatment for persistent disease.”

The Arthritis Therapy Acceleration Programme (A-TAP), led by Professor Chris Buckley, is an exciting project which champions an innovative approach to translational inflammation research through the application of unique rigorous signal seeking experimental medicine studies leading to rapid adoption into clinical trials underpinned by novel trial design.

In collaboration with

Supported by

Versus Arthritis logo

wellcome_trust_logo.png

  

NIHR

Similar stories

Immunology preprint reviews launched in Nature Reviews Immunology

Kennedy Main Research

The Oxford-Mount Sinai (OxMS) Preprint Journal Club has partnered with Nature Reviews Immunology to launch a monthly Preprint Watch column.

A more tailored approach to treating psoriatic arthritis

Arthritis Botnar Funding Main

Dr Laura Coates has been awarded £1.8M from the National Institute for Health Research (NIHR) to explore the potential for precision medicine in the choice of biologics to reduce inflammation and pain in psoriatic arthritis.

Motion-capture to help children walk: Oxford team support new gait laboratory in Ethiopia

Main Orthopaedics and trauma

The Research at Oxford on Analysis of Motion (ROAM) team at the University of Oxford have supported CURE Ethiopia Children’s Hospital to develop and open a brand new gait laboratory, the first of its kind in the country and the only other active gait lab on the African continent outside of South Africa.

Professor Eleanor Stride recognised in New Year’s Honours list 2021

Awards Main

Statutory Professor of Biomaterials is awarded Officer of the Order of the British Empire (OBE) for services to Engineering

Drug may boost vaccine responses in older adults

Kennedy Main

A preliminary study shows that a drug which helps immune cells self-clean may improve vaccine protection in older adults

Living reviews launched by Oxford and Cardiff in the wake of COVID-19 research

Kennedy Main Research

In a combined effort to help COVID-19 researchers the University of Oxford and Cardiff University have launched a series of “living reviews” in Oxford University Press’s new open access journal “Oxford Open Immunology”.