Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new treatment targeting tenascin-C could reduce the progression and severity of rheumatoid arthritis (RA) at the very early stages of disease.

RA is a common and debilitating disease affecting over 400,000 people in the UK. Current treatments, whilst effective for some people with RA, can lead to side effects and a comprised immune system. Moreover these drugs are not effective at all in many people. The condition causes joint swelling, stiffness and pain, and can lead to devastating destruction of joint tissue.

This selective approach might offer a safer treatment alternative to global immune suppression for people with RA.

Researchers from the Kennedy Institute, University of Oxford have found that a protein from the cell’s matrix, tenascin-C, is not present in the outer covering of healthy joints – an area known as the synovium – but that it appears in people who develop RA even before disease diagnosis. Using an innovative approach, the team have targeted tenascin-C for the first time and were able to reduce the progression and severity of RA in the lab.

Lead researcher Professor Kim Midwood says: "We previously identified tenascin-C as an endogenous trigger of the immune response. Normally kept under strict control, high levels of this protein accumulate in the joints of people with RA, driving chronic inflammation. Tenascin-C is a huge protein that has lots of different binding partners. Our lab mapped the exact region in tenascin-C responsible for its ability to activate the immune system, and which contributes to inflammation in RA. This enabled us to work together with Nascient Ltd to design and test drugs that prevent this part of tenascin-C from triggering inflammation. These drugs were engineered to be extremely specific; they only stop inflammation driven by tenascin-C and leave intact our ability to fight off infection. This selective approach might offer a safer treatment alternative to global immune suppression for people with RA."

She adds: "Working together with the team at Birmingham also enabled us to examine synovial biopsies from people with early RA. This revealed that tenascin-C appears much earlier during disease development than we previously thought; providing a potentially very exciting avenue for very early treatment of RA."

These promising results for RA sufferers have also been causing a stir in the academic community. Until now, tenascin-C had evaded researchers from becoming a potential therapeutic target due a lack of drugs that specifically block the pro-inflammatory action of this large multifunctional matrix molecule. With this research, the team at the Kennedy have managed to rein tenascin-C in for the first time and use it as a disease specific target.

Similar stories

Emergency to use the FORCE pathway for wrist fractures in children

New research from the University of Oxford has shown that doctors can simplify treatment for the most common fracture in children, reducing NHS costs.

Kennedy researchers awarded funding to improve the understanding of inflammatory bowel diseases

A new £1.5M grant from the Medical Research Council (MRC) to the Powrie Group at the Kennedy Institute will help define different pathotypes of inflammatory bowel diseases that could lead to better and more focused treatments for patients.

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.