Interleukin 1 preferentially stimulates the production of tissue-type plasminogen activator by human articular chondrocytes.
Bunning RA., Crawford A., Richardson HJ., Opdenakker G., Van Damme J., Russell RG.
Interleukin 1, derived from human placenta, stimulates plasminogen activator activity in human articular chondrocytes. The stimulation of plasminogen activator activity can be abolished by preincubation of placental interleukin 1 with an antiserum to homogeneous 22K factor, a species of interleukin 1 beta, indicating that the stimulation of plasminogen activator activity is due to interleukin 1 and not contaminating factors. Chondrocytes produce three species of plasminogen activator, with apparent Mr approximately 50,000, 65,000 and 100,000 as determined after sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis with gels containing casein and plasminogen. Both placental interleukin 1 and 22K factor enhance the production of the species of Mr approximately 65,000 and 100,000. Comparison of the mobility of the plasminogen activator species on SDS-polyacrylamide gel electrophoresis with human urokinase (u-PA) and human melanoma tissue-type plasminogen activator (t-PA) and studies with antibodies to these enzymes indicate that the Mr approximately 50,000 species is a u-PA and the Mr approximately 65,000 a t-PA. The Mr approximately 100,000 species is possibly an enzyme-inhibitor complex. Interleukin 1 therefore appears to enhance the production of t-PA and a putative enzyme-inhibitor complex. Abolition of plasminogen activator activity in the fibrin plate assay with antibodies to t-PA and u-PA also confirms enhanced t-PA production on interleukin 1 stimulation, though there is also evidence for increased cell-associated production of u-PA.