Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diphosphonates are known to inhibit bone resorption in tissue culture and in experimental animals. This effect may be due to their ability to inhibit the dissolution of hydroxyapatite crystals, but other mechanisms may be important. Since lysosomal enzymes have implicated in the process of bone resorption, we have examined the effect of several phosphonates and of a polyphosphate (P20,2) on lysosomal hydrolases derived from rat liver and rat bone. Dichloromethylene diphosphonate strongly inhibited acid beta-glycerophosphatase (EC and acid p-nitrophenyl phosphatase (EC and to a lesser degree (in descending order) acid pyrophosphatase (EC 3.1.3.-), arylsulfatase A (EC, deoxyribonuclease II(EC and phosphoprotein phosphatase (EC of rat liver. Inhibition of acid p-nitrophenyl phosphatase and arylsulfatase A was competitive. Ethane-1-hydroxy-1, 1-diphosphonate did not inhibit any of these enzymes, except at high concentrations. Neither dichloromethylene diphosphonate nor ethane-1-hydroxy-1, 1-diphosphonate had any effect on beta-glucuronidase (EC, arylesterase (EC and cathepsin D (EC Of several other phosphonates tested only undec-10-ene-1-hydroxy-1, 1-diphosphonic acid inhibited acid p-nitrophenyl phosphatase strongly, the polyphosphate (P20, I) had little effect. Acid p-nitrophenyl phosphatase in rat calvaria extract behaved in the same way as the liver enzyme and was also strongly inhibited by dichloromethylene diphosphonate, but not by ethane-1-hydroxy-1, 1-diphosphonate. It is suggested that the inhibition of bone resorption by dichloromethylene diphosphonate might be due in part to a direct effect of this diphosphonate on lysosomal hydrolases.

Original publication




Journal article


Biochim biophys acta

Publication Date





429 - 438


Acid Phosphatase, Animals, Bone and Bones, Etidronic Acid, Female, Fetus, Kinetics, Liver, Lysosomes, Organophosphonates, Organophosphorus Compounds, Phosphoric Monoester Hydrolases, Rats