Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature.

Type

Journal article

Journal

American Journal of Human Genetics

Publication Date

02/1990

Volume

46

Pages

293 - 307

Addresses

University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, England.

Keywords

Chromosomes, Human, Pair 7, Chromosomes, Human, Pair 17, Humans, Osteogenesis Imperfecta, Collagen, DNA Restriction Enzymes, Restriction Mapping, Pedigree, Phenotype, Mutation, Polymorphism, Genetic, Polymorphism, Restriction Fragment Length, Genes, Female, Male, Genetic Linkage