Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Preclinical imaging in osteoarthritis is a rapidly growing area with three principal objectives: to provide rapid, sensitive tools to monitor the course of experimental OA longitudinally; to describe the temporal relationship between tissue-specific pathologies over the course of disease; and to use molecular probes to measure disease activity in vivo. Research in this area can be broadly divided into those techniques that monitor structural changes in tissues (microCT, microMRI, ultrasound) and those that detect molecular disease activity (positron emission tomography (PET), optical and optoacoustic imaging). The former techniques have largely evolved from experience in human joint imaging and have been refined for small animal use. Some of the latter tools, such as optical imaging, have been developed in preclinical models and may have translational benefit in the future for patient stratification and for monitoring disease progression and response to treatment. In this narrative review we describe these methodologies and discuss the benefits to animal research, understanding OA pathogenesis, and in the development of human biomarkers.

Original publication

DOI

10.1016/j.joca.2020.03.016

Type

Journal article

Journal

Osteoarthritis cartilage

Publication Date

07/2020

Volume

28

Pages

874 - 884

Keywords

In vivo imaging, Optical imaging, Osteoarthritis, Photoacoustic imaging, Protease-activated probes, microCT, microMRI