Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To treat systemic bone loss as in osteoporosis and/or focal osteolysis as in rheumatoid arthritis or periodontal disease, most approaches target the osteoclasts, the cells that resorb bone. Bisphosphonates are currently the most widely used antiresorptive therapies. They act by binding the mineral component of bone and interfere with the action of osteoclasts. The nitrogen-containing bisphosphonates, such as alendronate, act as inhibitors of farnesyl-pyrophosphate synthase, which leads to inhibition of the prenylation of many intracellular signaling proteins. The discovery of RANKL and the essential role of RANK signaling in osteoclast differentiation, activity and survival have led to the development of denosumab, a fully human monoclonal antibody. Denosumab acts by binding to and inhibiting RANKL, leading to the loss of osteoclasts from bone surfaces. In phase 3 clinical studies, denosumab was shown to significantly reduce vertebral, nonvertebral and hip fractures compared with placebo and increase areal BMD compared with alendronate. In this review, we suggest that the key pharmacological differences between denosumab and the bisphosphonates reside in the distribution of the drugs within bone and their effects on precursors and mature osteoclasts. This may explain differences in the degree and rapidity of reduction of bone resorption, their potential differential effects on trabecular and cortical bone, and the reversibility of their actions.

Original publication

DOI

10.1016/j.bone.2010.11.020

Type

Journal article

Journal

Bone

Publication Date

04/2011

Volume

48

Pages

677 - 692

Addresses

Department of Medicine, Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA 02115, USA. Roland_Baron@hsdm.harvard.edu

Keywords

Osteoclasts, Animals, Humans, Osteoporosis, Disease Models, Animal, Diphosphonates, Antibodies, Monoclonal, Bone Density Conservation Agents, RANK Ligand, Clinical Trials as Topic, Antibodies, Monoclonal, Humanized