Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis but are recognized to adopt a pathological role in rheumatoid arthritis (RA), promoting the infiltration and activation of immune cells to perpetuate local inflammation, pain and joint destruction. Carbohydrates (glycans) attached to cell surface proteins are fundamental regulators of cellular interactions between stromal and immune cells, but very little is known about the glycome of SFs or how glycosylation regulates their biology. Here we fill these gaps in our understanding of stromal guided pathophysiology by systematically mapping glycosylation pathways in healthy and arthritic SFs. We used a combination of transcriptomic and glycomic analysis to show that transformation of fibroblasts into pro-inflammatory cells in RA is associated with profound glycan remodeling, a process that involves reduction of a2-6 terminal sialylation that is mostly mediated by TNFa-dependent inhibition of the glycosyltransferase ST6Gal1. We also show that sialylation of SFs correlates with distinct disease stages and SFs functional subsets in both human RA and models of mouse arthritis. We propose that pro-inflammatory cytokines in the joint remodel the SF-glycome, transforming a regulatory tissue intended to preserve local homeostasis, into an under-sialylated and highly pro-inflammatory microenvironment that contributes to an amplificatory inflammatory network that perpetuates chronic inflammation. These results highlight the importance of cell glycosylation in stromal immunology.

Type

Journal article

Journal

Nature communications

Publisher

Nature Research (part of Springer Nature)

Publication Date

09/02/2021