Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A portable device for the rapid concentration of Bacillus subtilis var niger spores, also known as Bacillus globigii (BG), using a thin-reflector acoustofluidic configuration is described. BG spores form an important laboratory analog for the Bacillus anthracis spores, a serious health and bioterrorism risk. Existing systems for spore detection have limitations on detection time and detection that will benefit from the combination with this technology. Thin-reflector acoustofluidic devices can be cheaply and robustly manufactured and provide a more reliable acoustic force than previously explored quarter-wave resonator systems. The system uses the acoustic forces to drive spores carried in sample flows of 30 ml/h toward an antibody functionalized surface, which captures and immobilizes them. In this implementation, spores were fluorescently labeled and imaged. Detection at concentrations of 100 CFU/ml were demonstrated in an assay time of 10 min with 60% capture. We envisage future systems to incorporate more advanced detection of the concentrated spores, leading to rapid, sensitive detection in the presence of significant noise.

Original publication

DOI

10.1121/10.0005278

Type

Journal article

Journal

J acoust soc am

Publication Date

06/2021

Volume

149

Keywords

Acoustics, Bacillus, Bacillus anthracis, Spores, Bacterial