Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Unstructured text, including medical records, patient feedback, and social media comments, can be a rich source of data for clinical research. Natural language processing (NLP) describes a set of techniques used to convert passages of written text into interpretable datasets that can be analysed by statistical and machine learning (ML) models. The purpose of this paper is to provide a practical introduction to contemporary techniques for the analysis of text-data, using freely-available software. Methods: We performed three NLP experiments using publicly-available data obtained from medicine review websites. First, we conducted lexicon-based sentiment analysis on open-text patient reviews of four drugs: Levothyroxine, Viagra, Oseltamivir and Apixaban. Next, we used unsupervised ML (latent Dirichlet allocation, LDA) to identify similar drugs in the dataset, based solely on their reviews. Finally, we developed three supervised ML algorithms to predict whether a drug review was associated with a positive or negative rating. These algorithms were: a regularised logistic regression, a support vector machine (SVM), and an artificial neural network (ANN). We compared the performance of these algorithms in terms of classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results: Levothyroxine and Viagra were reviewed with a higher proportion of positive sentiments than Oseltamivir and Apixaban. One of the three LDA clusters clearly represented drugs used to treat mental health problems. A common theme suggested by this cluster was drugs taking weeks or months to work. Another cluster clearly represented drugs used as contraceptives. Supervised machine learning algorithms predicted positive or negative drug ratings with classification accuracies ranging from 0.664, 95% CI [0.608, 0.716] for the regularised regression to 0.720, 95% CI [0.664,0.776] for the SVM. Conclusions: In this paper, we present a conceptual overview of common techniques used to analyse large volumes of text, and provide reproducible code that can be readily applied to other research studies using open-source software.

Original publication

DOI

10.1186/s12874-021-01347-1

Type

Journal article

Journal

Bmc medical research methodology

Publication Date

01/12/2021

Volume

21