Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interactions between transmembrane (TM) proteins are fundamental for a wide spectrum of cellular functions, but precise molecular details of these interactions remain largely unknown due to the scarcity of experimentally determined three-dimensional complex structures. Computational techniques are therefore required for a large-scale annotation of interaction sites in TM proteins. Here, we present a novel deep-learning approach, DeepTMInter, for sequence-based prediction of interaction sites in α-helical TM proteins based on their topological, physiochemical, and evolutionary properties. Using a combination of ultra-deep residual neural networks with a stacked generalization ensemble technique DeepTMInter significantly outperforms existing methods, achieving the AUC/AUCPR values of 0.689/0.598. Across the main functional families of human transmembrane proteins, the percentage of amino acid sites predicted to be involved in interactions typically ranges between 10% and 25%, and up to 30% in ion channels. DeepTMInter is available as a standalone package at https://github.com/2003100127/deeptminter. The training and benchmarking datasets are available at https://data.mendeley.com/datasets/2t8kgwzp35.

Original publication

DOI

10.1016/j.csbj.2021.03.005

Type

Journal

Comput struct biotechnol j

Publication Date

2021

Volume

19

Pages

1512 - 1530

Keywords

Deep learning, Molecular evolution, Protein function, Protein structure, Protein-protein interactions, Sequence annotation