Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The study of the profile of gene expression in a cell or tissue at a particular moment gives an insight into the plans of the cell for protein synthesis. Recent technological advances make it possible to analyze the expression of the entire genome in a single experiment. These "gene expression assays" complement or replace previous assays which measured the gene expression of only one gene, or a select group of genes. Within this chapter we outline the development of the gene expression assay and provide examples of the wide range of disciplines in which it is used. An overview of the current technologies is given, and includes an introduction to laser capture microdissection and linear amplification of RNA, both of which have extended the application of gene expression assays. Illustrative examples in the field of cancer and neuroscience highlight the scientific achievements. This technology has made in understanding the pathogenesis of diseases, including breast cancer, Huntington's disease, and schizophrenia. With recent advances including exon arrays to investigate alternative splicing, tiling arrays to investigate novel transcription start sites, and on-chip chromatin immunoprecipitation to investigate DNA-protein interactions, the future of gene expression assays is set to further our understanding of the complexities of gene expression.

Original publication




Journal article


Adv clin chem

Publication Date





247 - 292


Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Genetic Techniques, Humans, Mental Disorders, Neoplasms, Nervous System Diseases, Nucleic Acid Hybridization, Oligonucleotide Array Sequence Analysis