Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Tumor populations may selectively colonize bone that is being actively remodeled. In prostate cancer patients, androgen deprivation directly inhibits tumor growth initially, whilst induced bone loss may facilitate tumor colonization of bone by androgen-insensitive cells. We have tested this hypothesis using a xenograft model of early growth of prostate cancer in bone. METHODS: PC3 cells transfected with Green fluorescent protein (GFP) were injected into castrated and non-castrated athymic mice via intrabial and intracardiac routes. In vivo tumor growth was monitored daily and animals sacrificed 6-9 days following initial GFP-based detection of tumors. Tumor bearing and contra-lateral non-tumor bearing tibias were analyzed extensively by micro-CT and histology/immunohistochemistry for the presence of tumor cells and the effects of tumor and/or castration on bone cells and bone structure evaluated. RESULTS: GFP-positive tumors in bone were visible from 12 days post-injection following intratibial injection, allowing tumors <1 mm diameter to be monitored in live animals. Castration did not affect tumor frequency, tumor volume, or time to initial appearance of tumors injected via intratibial or intracardiac routes. Castration decreased trabecular bone volume in all mice. Significant tumor-induced suppression of numbers of osteoblasts, coupled with increased numbers of activated osteoclasts, was evident in both intact animals and castrated animals. CONCLUSIONS: In vivo GFP imaging allows the detection of early tumor growth at intra-osseous sites. Castration induces bone loss, but PC3-GFP cells are also capable of inducing bone remodeling in intact animals at early time points, independently of pre-existing castration-induced alterations to bone.

Original publication

DOI

10.1002/pros.20833

Type

Journal article

Journal

Prostate

Publication Date

01/11/2008

Volume

68

Pages

1707 - 1714

Keywords

Androgens, Animals, Bone Neoplasms, Bone Remodeling, Green Fluorescent Proteins, Humans, Luminescent Agents, Male, Mice, Mice, Nude, Microscopy, Fluorescence, Neoplasm Transplantation, Orchiectomy, Prostatic Neoplasms, Time Factors, Tomography, X-Ray Computed, Transplantation, Heterologous