Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Depletion of the mitochondrial membrane potential (MMP, ΔΨm) is considered the earliest event in the apoptotic cascade. It even occurs ahead of nuclear apoptotic characteristics, including chromatin condensation and DNA breakage. Once the MMP collapses, cell apoptosis will initiate irreversibly. A series of lipophilic cationic dyes can pass through the cell membrane and aggregate inside the matrix of mitochondrion, and serve as fluorescence marker to evaluate MMP change. As one of the six members of the Cl- intracellular channel (CLIC) family, CLIC4 participates in the cell apoptotic process mainly through the mitochondrial pathway. Here we describe a detailed protocol to measure MMP via monitoring the fluorescence fluctuation of Rhodamine 123 (Rh123), through which we study apoptosis induced by CLIC4 knockdown. We discuss the advantages and limitations of the application of confocal laser scanning and normal fluorescence microscope in detail, and also compare it with other methods.

Original publication

DOI

10.3791/56317

Type

Journal

J vis exp

Publication Date

17/07/2018

Keywords

Apoptosis, Chloride Channels, Humans, Membrane Potential, Mitochondrial, Transfection