Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: MicroRNA 140 (miR-140) is a chondrocyte-specific endogenous gene regulator implicated in osteoarthritis (OA). As mechanical injury is a primary aetiological factor in OA, we investigated miR-140-dependent mechanosensitive gene regulation using a novel CRISPR-Cas9 methodology in primary human chondrocytes. METHOD: Primary (passage 1/2) human OA chondrocytes were isolated from arthroplasty samples (six donors) and transfected with ribonuclear protein complexes or plasmids using single guide RNAs (sgRNAs) targeting miR-140, in combination with Cas9 endonuclease. Combinations of sgRNAs and single/double transfections were tested. Gene editing was measured by T7 endonuclease 1 (T7E1) assay. miRNA levels were confirmed by qPCR in chondrocytes and in wild type murine femoral head cartilage after acute injury. Predicted close match off-targets were examined. Mechanosensitive miR-140 target validation was assessed in 42 injury-associated genes using TaqMan Microfluidic cards in targeted and donor-matched control chondrocytes. Identified targets were examined in RNAseq data from costal chondrocytes from miR-140-/- mice. RESULTS: High efficiency gene editing of miR-140 (90-98%) was obtained when two sgRNAs were combined with double RNP-mediated CRISPR-Cas9 transfection. miR-140 levels fell rapidly after femoral cartilage injury. Of the top eight miR-140 gene targets identified (P 

Original publication

DOI

10.1016/j.joca.2022.01.005

Type

Journal article

Journal

Osteoarthritis cartilage

Publication Date

21/01/2022

Keywords

CRISPR-Cas9, Chondrocyte, Human, Injury, Osteoarthritis, miR-140