Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Purpose To estimate the criterion validity of sagittal thoracolumbar spine measurement using a surface topography method in a clinical population against the gold standard and to estimate concurrent validity against two non-radiographic clinical tools. Methods In this cross-sectional validity study, thoracolumbar curvature was measured in adults with spinal conditions recruited from a specialist orthopaedic hospital. A surface topography method using a Kinect sensor was compared to three other measurement methods: spinal radiograph (gold standard), flexicurve and digital inclinometer. Correlation coefficients and agreement between the measurement tools were analysed. Results Twenty-nine participants (79% female) were included in criterion validity analyses and 38 (76% female) in concurrent validity analyses. The surface topography method was moderately correlated with the radiograph (r = .70, p < .001) in the thoracic spine, yet there was no significant correlation with the radiograph in the lumbar spine (r = .32, p = .89). The surface topography method was highly correlated with the flexicurve (rs = .91, p < .001) and digital inclinometer (r = .82, p < .001) in the thoracic spine, and highly correlated with the flexicurve (r = .74, p < .001) and digital inclinometer (r = .74, p < .001) in the lumbar spine. Conclusions The surface topography method showed moderate correlation and agreement in thoracic spine with the radiograph (criterion validity) and high correlation with the flexicurve and digital inclinometer (concurrent validity). Compared with other non-radiographic tools, this surface topography method displayed similar criterion validity for kyphosis curvature measurement.

Original publication

DOI

10.1007/s43390-022-00538-0

Type

Journal article

Journal

Spine deformity

Publisher

Springer Science and Business Media LLC

Publication Date

09/07/2022