Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.

Original publication

DOI

10.1093/immadv/ltab003

Type

Journal article

Journal

Immunother adv

Publication Date

01/2021

Volume

1

Keywords

COVID-19, CSF1R, blood, dendritic cells, human, monocyte