Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND AIMS: The adverse effects of air pollutants on the risk of most cardiovascular diseases (CVDs) are well-established, but the risk of CVDs such as deep vein thrombosis, pulmonary embolism, or aortic valve stenosis have been underappreciated, especially in the diabetic population. This study aimed to evaluate associations between long-term air pollutants exposure and the risk of incident CVDs among participants with diabetes. METHODS: This study included 27,827 participants with baseline diabetes from the UK Biobank. We then estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for CVDs associated with chronic air pollutant exposure in the diabetic population by fitting the Cox proportional hazards model. Moreover, we investigated the cardiovascular effects of air pollutants at concentrations below WHO guideline limits. RESULTS: After multivariable adjustment, long-term NO2 and NOx exposures were positively associated with the development of 8 and 6 types of CVDs in participants with diabetes, respectively. In term of particulate matters, the effect estimates ranged from 1.51 (1.13, 2.03) (coronary artery disease) to 4.65 (2.73, 7.92) (peripheral arterial disease) per 10 μg/m3 increase in PM2.5. Whereas, the effect estimates ranged from 1.15 (1.04, 1.27) (arterial hypertension) to 2.28 (1.40, 3.69) (pulmonary embolism) per 10 μg/m3 increase in PM10. In addition, our study discovered that for most of the cardiovascular events (8 of 9), the deleterious effects of air pollutants persisted even when participants were exposed to air pollutants concentrations below WHO guideline limits. CONCLUSIONS: Long-term exposure to ambient NO2, NOx, PM2.5, and PM10, either at normal or low level, increased risk of various cardiovascular outcomes in the diabetic population.

Original publication




Journal article



Publication Date





1 - 8


Air pollutants, Cardiovascular diseases, Diabetic population, UK Biobank, Humans, Air Pollutants, Cardiovascular Diseases, Environmental Pollutants, Nitrogen Dioxide, Biological Specimen Banks, Air Pollution, Environmental Exposure, Particulate Matter, Diabetes Mellitus, Pulmonary Embolism, United Kingdom