Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the present study we have investigated the sonoporation dynamics in a single cell using a novel microfluidic-based approach. Our methodology has successfully addressed the biophysical mechanisms underlying US-induced cell membrane sonoporation by performing in situ measurement of localised cell membrane deformation, and simultaneous quantification of both intracellular calcium concentration ([Ca2+]i) and transmembrane transfer of extracellular membrane-impermeable probes. We have highlighted novel aspects of microbubble-cluster dynamics combined with localised cell membrane strain, which could be responsible for membrane permeabilisation and transmembrane pore formation correlated with the transduction of intracellular biochemical signals (i.e. [Ca2+]i influx) as a result of microbubble-cell interaction.


Conference paper

Publication Date





1743 - 1745