Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: We evaluated the presence and frequency of spin practices and poor reporting standards in studies that developed and/or validated clinical prediction models using supervised machine learning techniques. STUDY DESIGN AND SETTING: We systematically searched PubMed from 01-2018 to 12-2019 to identify diagnostic and prognostic prediction model studies using supervised machine learning. No restrictions were placed on data source, outcome, or clinical specialty. RESULTS: We included 152 studies: 38% reported diagnostic models and 62% prognostic models. When reported, discrimination was described without precision estimates in 53/71 abstracts (74.6%, [95% CI 63.4 - 83.3]) and 53/81 main texts (65.4%, [95% CI 54.6 - 74.9]). Of the 21 abstracts that recommended the model to be used in daily practice, 20 (95.2% [95% CI 77.3 - 99.8]) lacked any external validation of the developed models. Likewise, 74/133 (55.6% [95% CI 47.2 - 63.8]) studies made recommendations for clinical use in their main text without any external validation. Reporting guidelines were cited in 13/152 (8.6% [95% CI 5.1 - 14.1]) studies. CONCLUSION: Spin practices and poor reporting standards are also present in studies on prediction models using machine learning techniques. A tailored framework for the identification of spin will enhance the sound reporting of prediction model studies.

Original publication

DOI

10.1016/j.jclinepi.2023.03.024

Type

Journal article

Journal

J clin epidemiol

Publication Date

04/04/2023

Keywords

development, diagnosis, misinterpretation, overextrapolation, overinterpretation, prognosis, spin, validation