Serially Combining Epidemiological Designs Does Not Improve Overall Signal Detection in Vaccine Safety Surveillance.
Arshad F., Schuemie MJ., Bu F., Minty EP., Alshammari TM., Lai LYH., Duarte-Salles T., Fortin S., Nyberg F., Ryan PB., Hripcsak G., Prieto-Alhambra D., Suchard MA.
INTRODUCTION: Vaccine safety surveillance commonly includes a serial testing approach with a sensitive method for 'signal generation' and specific method for 'signal validation.' The extent to which serial testing in real-world studies improves or hinders overall performance in terms of sensitivity and specificity remains unknown. METHODS: We assessed the overall performance of serial testing using three administrative claims and one electronic health record database. We compared type I and II errors before and after empirical calibration for historical comparator, self-controlled case series (SCCS), and the serial combination of those designs against six vaccine exposure groups with 93 negative control and 279 imputed positive control outcomes. RESULTS: The historical comparator design mostly had fewer type II errors than SCCS. SCCS had fewer type I errors than the historical comparator. Before empirical calibration, the serial combination increased specificity and decreased sensitivity. Type II errors mostly exceeded 50%. After empirical calibration, type I errors returned to nominal; sensitivity was lowest when the methods were combined. CONCLUSION: While serial combination produced fewer false-positive signals compared with the most specific method, it generated more false-negative signals compared with the most sensitive method. Using a historical comparator design followed by an SCCS analysis yielded decreased sensitivity in evaluating safety signals relative to a one-stage SCCS approach. While the current use of serial testing in vaccine surveillance may provide a practical paradigm for signal identification and triage, single epidemiological designs should be explored as valuable approaches to detecting signals.