Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS: A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS: The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS: Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.

Original publication




Journal article


Bju int

Publication Date



clinical practice, genetics, germline mutation, prostate cancer, somatic biomarker