Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Pericoronary adipose tissue (PCAT) attenuation and low-attenuation noncalcified plaque (LAP) burden can both predict outcomes. OBJECTIVES: This study sought to assess the relative and additive values of PCAT attenuation and LAP to predict future risk of myocardial infarction. METHODS: In a post hoc analysis of the multicenter SCOT-HEART (Scottish Computed Tomography of the Heart) trial, the authors investigated the relationships between the future risk of fatal or nonfatal myocardial infarction and PCAT attenuation measured from coronary computed tomography angiography (CTA) using multivariable Cox regression models including plaque burden, obstructive coronary disease, and cardiac risk score (incorporating age, sex, diabetes, smoking, hypertension, hyperlipidemia, and family history). RESULTS: In 1,697 evaluable participants (age: 58 ± 10 years), there were 37 myocardial infarctions after a median follow-up of 4.7 years. Mean PCAT was -76 ± 8 HU and median LAP burden was 4.20% (IQR: 0%-6.86%). PCAT attenuation of the right coronary artery (RCA) was predictive of myocardial infarction (HR: 1.55; P = 0.017, per 1 SD increment) with an optimum threshold of -70.5 HU (HR: 2.45; P = 0.01). In multivariable analysis, adding PCAT-RCA of ≥-70.5 HU to an LAP burden of >4% (the optimum threshold for future myocardial infarction; HR: 4.87; P < 0.0001) led to improved prediction of future myocardial infarction (HR: 11.7; P < 0.0001). LAP burden showed higher area under the curve compared to PCAT attenuation for the prediction of myocardial infarction (AUC = 0.71 [95% CI: 0.62-0.80] vs AUC = 0.64 [95% CI: 0.54-0.74]; P < 0.001), with increased area under the curve when the 2 metrics are combined (AUC = 0.75 [95% CI: 0.65-0.85]; P = 0.037). CONCLUSION: Coronary CTA-defined LAP burden and PCAT attenuation have marked and complementary predictive value for the risk of fatal or nonfatal myocardial infarction.

Original publication




Journal article


Jacc cardiovasc imaging

Publication Date





1078 - 1088


computed tomography angiography, coronary artery disease, low-attenuation noncalcified plaque burden, noncalcified plaque burden, pericoronary adipose tissue, risk stratification, Adipose Tissue, Aged, Computed Tomography Angiography, Coronary Angiography, Coronary Artery Disease, Humans, Middle Aged, Myocardial Infarction, Plaque, Atherosclerotic, Predictive Value of Tests