Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cycle-consistent generative adversarial network (CycleGAN) has been widely used for cross-domain medical image systhesis tasks particularly due to its ability to deal with unpaired data. However, most CycleGAN-based synthesis methods can not achieve good alignment between the synthesized images and data from the source domain, even with additional image alignment losses. This is because the CycleGAN generator network can encode the relative deformations and noises associated to different domains. This can be detrimental for the downstream applications that rely on the synthesized images, such as generating pseudo-CT for PET-MR attenuation correction. In this paper, we present a deformation invariant model based on the deformation-invariant CycleGAN (DicycleGAN) architecture and the spatial transformation network (STN) using thin-plate-spline (TPS). The proposed method can be trained with unpaired and unaligned data, and generate synthesised images aligned with the source data. Robustness to the presence of relative deformations between data from the source and target domain has been evaluated through experiments on multi-sequence brain MR data and multi-modality abdominal CT and MR data. Experiment results demonstrated that our method can achieve better alignment between the source and target data while maintaining superior image quality of signal compared to several state-of-the-art CycleGAN-based methods.

Original publication

DOI

10.1007/978-3-030-33843-5_23

Type

Chapter

Publication Date

01/01/2019

Volume

11905 LNCS

Pages

245 - 254